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Card Dealing 

and 

The Chinese Remainder Theorem

Many classroom exercises involve dealing cards.  In this chapter we will focus on a simple

problem: Write an algorithm to randomly select one card out of an ordinary 52-card deck.  My

students frequently derive an efficient algorithm to solve this problem.  The algorithm goes as

follows we use a random number generator to select a number between 1 and 52 (or between 0 and

51; either way works fine).  Given this number, for example 35, we need a method of assigning the

number a suit and a value.  This method must assign a unique card to each number.  The method

usually employed works as follows:  Compute the number mod 4.  In our example 35 mod 4 is 3. 

We consider 3 as spades (0 is clubs, 1 is diamonds, and 2 is hearts).  Next compute the number mod

13.  In this example 35 mod 13 is 9.  This corresponds to the value 10 (0 is an ace, 1 is a deuce, 2

is a 3, up to 12 which is a king).  Hence our card is the 10 of Spades.  There is nothing at all wrong

with the above algorithm.  However, suppose we had a deck of 40 cards, with four suits and values

from Ace to 10.  Now the choosing a value between 1 and 40 we compute the number mod 4 and

mod 10.  This means that 15 and 35 each correspond to 6 of Spades.  Our algorithm works in one

case but not the other.

The first case worked because 4 and 13 are relatively prime, 4z13.  Similarly, in the second

case 4 and 10 are not relatively prime.  This can be made precise by the Chinese remainder theorem. 

However, first we need to take care of an issue:
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Theorem: Suppose x1, x2, ..., xn are pairwise relatively prime.  (That is i…j implies xizxj.)  Then

x1zx2Ax3Ax4A...Axn.  (In other words, any number in the set is relatively prime to the

product of the others.)

Proof: Suppose otherwise; then there is some prime p such that p|x1 and p|x2Ax3Ax4A...Axn. 

Now if p does not divide xi for some i then pzxi, since p is a prime.  Hence if p does

not divide x2 then by Euclid’s Lemma p|x3Ax4A...Axn.  In the latter case, we can peel off

x3 just as we did x2 and we can continue like this until p|xk for some k.  We know that

there must be some such k since the process cannot continue indefinitely.  Since p

divides both x1 and xk, it is not true that x1z xk.  Thus we have contradicted one of our

assumptions and the theorem is proven.

The utility of this theorem will be explained at the end of the next example.

 

The Chinese Remainder Theorem

Suppose we have the system of equations:

x / c1 mod m1

x / c2 mod m2

x / c3 mod m3

.

.
x / cn mod mn

The Chinese Remainder Theorem states:

If each pair of moduli mi and mj are relatively prime, mizmj, then the equations have

a solution and any two solutions are congruent mod M = m1m2m3...mn.

Proofs of the Chinese Remainder Theorem

In general theorems are not proven by examples.  However, in the following two examples

general method of solutions are used.  Abstracting the methods into general proofs is a good exercise

for the serious student.   
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Example Suppose we want to solve simultaneously the following three congruences:

x / 2 mod 5

x / 4 mod 7

x / 1 mod 9

2 is a solution for the first congruence.  From that we have that our general solution

should be of the form x = 5y + 2.  Substituting that into the second congruence we

get 5y + 2 /4 mod 7.  This leads to 5y / 2 mod 7.  The previous section tells us how

to solve this type of problem using the extended Euclidean algorithm.  However,

usually we can find a solution directly. We keep adding 7 to the right-hand side until

we get 5y / 30 mod 7.  We can do this, because 7 mod 7 is the same as zero.  We

have y = 6 is a solution which implies y = 6 + 7z.  Putting this in x = 5y + 2, we get

x = 32 + 35z.  Inserting this into the third congruence we get 32 + 35z / 1 mod 9. 

This leads to 5 + 8z/1 mod 9.  Hence 8z / 5 mod 9.  We keep adding 9 to the right-

hand side to until we get  get 8z / 32 mod 9.  This gives us z / 4 mod 9, or

z = 4 + 9w.  Plugging this into x = 32 + 35z we get x = 172 + 315w.  Note that 315

is the product of the three moduli, and our answer is then x = 172 mod 315.  Note,

that at each stage of this example we have a congruence of the form cu / v mod n

where n is a product of terms relatively prime to c.  However, the above theorem tells

us that c must then be relatively prime to n.  From this and the previous section we

know that c must have an inverse mod n.  It follows that there must be a solution to

the problem.

Example Suppose we want to solve simultaneously the following three congruences:

x / 2 mod 4

x / 3 mod 5

x / 4 mod 7

We will look for a solution of the form C1A5A7 + C2A4A7 + C3A4A5.  If we plug this into

each of the expressions then two terms are congruent to zero.  To make the

expression solve our problem we need to solve for each of the parameters C1, C2, and
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C3, so that  C1A5A7 / 2 mod 4, C2A4A7 / 3 mod 5 and C3A4A5 / 4 mod 7.  Solving these

using the same technique as in the last example we get, C1 = 2, C2  = 1, and C3 = 3. 

Plugging these values into C1A5A7 + C2A4A7 + C3A4A5, we get x = 158.  This indeed

satisfies the three congruences.  However, so does the product of the moduli

4A5A7 = 140.  (Also, it is easy to show that this is the smallest number with that

property.)  Subtracting 140 from 158, we get 18, which is our smallest positive

solution.  Note that in using this technique we have to solve equations of the form

CiAa1Aa2A...Aak / b mod an.  However, each of the terms aj on the left is relatively prime

to an.  By the theorem proven at the beginning of the section an must be relatively

prime to the product a1Aa2A...Aak.  Hence the problem has a solution.

So what do we do for the problem of a deck with 40 cards as at the beginning of this chapter

(since the Chinese Remainder Theorem does not apply)?  Again we choose a number, x, from 0 to

39 (1 to 40 does not work in this scheme).  By x div 4, we mean integer division by 4 (it can also

be denoted x \ 4).  For example, 7 div 2 = 3.  If x is 25, we choose the suit by 25 mod 4 = 1 and the

value by 25 div 4 = 6.  The number 25 then corresponds to the 7 of diamonds.

The next three exercises are to solve systems of three equations.

G   Exercise  1 x / 1  mod 3
x / 0  mod 4
x / 2  mod 5

G   Exercise  2 x / 2  mod 5
x / 3  mod 6
x / 2  mod 7

G   Exercise  3 x / 3  mod 4
x / 5  mod 9
x / 9  mod 10
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Appendix to Section 10

An Existence Proof of the Chinese Remainder Theorem

The following is just a restatement of the Chinese Remainder Theorem followed by an

abstract proof.

Theorem: Suppose we are given k congruences: x / ai (mod  mi) with i = 1,2,3...k.  Suppose

that we have that mizmj whenever i … j; then there is a solution Y which is unique

(mod M) where M = m1m2m3...mk.   

Proof: First we show that if there is a solution then it is unique (mod M).  Suppose U and

V are both solutions.  Then U / V (mod mi) for all i.  But since the mi are all

pairwise relatively prime, U / V (mod M).  Now consider the mi as all fixed

constants.  The congruence involving mj, x / aj (mod  mj) can have  mj distinct values

for aj, that is to say aj can take on the values 0, 1, 2, ..., mj-1.  Altogether then there

are m1m2m3...mk = M problems involving these moduli.  However each number in the

class 0 through M-1 is a solution to one of the M problems.  Specifically, any integer

X is a solution to the k congruences X / (X mod mi) (mod  mi) with i = 1,2,3...k.  In

this expression X mod mi is the function where a mod b means the remainder of a on

division by b.  Hence we have M distinct problems with the above set of moduli.  We

also have that each integer in the class 0,1,2,...M-1 is solution to such a problem. 

But since these solutions are unique (mod M) each problem has a unique solution in

that class.
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1. x = 1 + 3y.  3y / 3 mod 4.  y /1 mod 4.  y = 1 + 4z.  x = 4 + 12z.  4 + 12z / 2 mod 5. 
z / 4 mod 5.  z = 4 + 5u.  x = 52 + 60 u.  The answer is 52.

2. x = 2 + 5y.  2 + 5y / 3 mod 6.  5y /1 mod 6.  y /5 mod 6.  y = 5 + 6z.  x = 27 + 30z. 
27 + 30z /2 mod 7.  2z / 3 mod 7.    z /5 mod 7.  z = 5 + 7u.  x = 177 + 210u.  The
answer is 177.

3. x = 3 + 4y.  3 + 4y / 5 mod 9.   4y / 2 mod 9.  y / 5 mod 9.  y = 5 + 9z.  x = 3 + 4y
= 23 + 36z.  23 + 36z / 9 mod 10.  6z /6 mod 10.  z /1 mod 10.  z = 1 + 9u. 
x = 59 + 360u.  The answer is 59.
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